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Abstract

Matrix diffusion is an important process for solute transport in fractured rock, and the matrix diffusion
coefficient is a key parameter for describing this process. Previous studies have indicated that the effective
matrix diffusion coefficient values, obtained from a large number of field tracer tests, are enhanced in
comparison with local values and may increase with test scale. In this study, we have performed numerical
experiments to investigate potential mechanisms behind possible scale-dependent behavior. The focus of
the experiments is on solute transport in flow paths having geometries consistent with percolation theories
and characterized by multiple local flow loops formed mainly by small-scale fractures. The water velocity
distribution through a flow path was determined using discrete fracture network flow simulations, and
solute transport was calculated using a previously derived impulse-response function and a particle-tracking
scheme. Values for effective (or up-scaled) transport parameters were obtained by matching breakthrough
curves from numerical experiments with an analytical solution for solute transport along a single fracture.
Results indicate that a combination of local flow loops and the associated matrix diffusion process, together
with scaling properties in flow path geometry, seems to be an important mechanism causing the observed
scale dependence of the effective matrix diffusion coefficient (at a range of scales).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid
in the rock matrix is called matrix diffusion. Direct laboratory and field evidence of matrix
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diffusion has been obtained in terms of an observed solute penetration distance into a rock matrix
(e.g., Birgersson and Neretnieks, 1990; Jardine et al., 1999; Polak et al., 2003). Indirect evidence
has been obtained from multi-tracer tests through the significant breakthrough-curve separation of
simultaneously injected tracers of different matrix diffusion coefficient values (e.g., Maloszewski
et al., 1999; Karasaki et al., 2000; Reimus et al., 2003a,b; Liu et al., 2004b). Owing to the orders-
of-magnitude slower flow velocity in the matrix compared to that in fractures, matrix diffusion
can significantly affect solute transport in fractured rock, and therefore is an important process for
a variety of problems, including remediation of subsurface contamination and geological disposal
of nuclear waste (e.g., Jardine et al., 1999; Neretnieks, 2002).

The matrix diffusion coefficient (molecular diffusion coefficient in free water, multiplied by
matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases
largely determines overall solute transport behavior. While matrix diffusion coefficient values
measured from small rock samples in the laboratory are generally used for modeling field-scale
solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently
have independently found that effective matrix diffusion coefficients much larger than laboratory
measurements are needed to match field-scale tracer test data (Becker and Shapiro, 2000; Shapiro,
2001; Neretnieks, 2002; Liu et al., 2003, 2004a).

In the past, the observed enhancement of the effective matrix diffusion coefficient has been
attributed to different mechanisms. Shapiro (2001) suggested that large-scale “effective matrix
diffusion” is not a diffusive process, but actually an advective process between high and low
permeability zones, resulting in a significantly increased “effective diffusion coefficient.”
Neretnieks (2002) argued that the existence of fracture in-filling creates relatively large areas for
solute to diffuse into rock matrix, which, together with the process of diffusion into stagnant
water, contributes to the need for increasing the effective diffusion coefficient to match the data.
Wu et al. (2004) and Liu et al. (2002, 2003, 2004a) indicated that the existence of many small-
scale fractures (which considerably increase the fracture–matrix interface area, but are not
considered in numerical models) might be the major reason for the relatively large effective
diffusion coefficients calculated from field data. Zhou et al. (2006) demonstrated that the
existence of a degradation zone (with a relatively large matrix porosity and effective matrix
diffusion coefficient) near the fracture–matrix interface also contributes to the observed
enhancement of effective matrix diffusion coefficient. Tsang and Doughty (2003) reported that
the observed enhancement of the effective matrix diffusion coefficient might result from the
existence of so-called complex fractures (Mazurek et al., 2001). These complex fractures are
characterized as a thin fracture zone having several interconnected subfractures.

In addition to the observed enhancement, Liu et al. (2004b) reported that on the basis of field
test results, the effective matrix diffusion coefficient might be scale dependent. Zhou et al. (2005)
further reported the scale dependence by performing a more comprehensive review of related
field-testing results. The effective matrix diffusion coefficient, like permeability and dispersivity,
seems to increase with test scale. This scale dependence has important implications for large-scale
solute transport in fractured rock. Although a number of mechanisms have been proposed to
explain the enhancement of the effective matrix diffusion coefficient (mentioned above),
mechanisms behind the scale dependence are not fully investigated nor quantified at this stage.

Liu et al. (2004b) argue that transport paths in a fracture network may display fractal
properties, and therefore the fracture–matrix interface area (partially controlling the matrix
diffusion process) would be scale dependent. Consequently, observed effective matrix diffusion
coefficient values are also scale dependent. The major objective of this work is to develop a more
rigorous interpretation of the scale dependence based mainly on fracture geometry. Specifically,
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we focus on mass transfer among subfractures and the surrounding rock matrix associated with a
single major flow path. Understanding this mass transfer process may hold the key to
understanding why the effective matrix diffusion coefficient is scale dependent.

2. Methods

Numerical experiments are performed in this study to investigate mechanisms behind the
observed scale dependence of the effective matrix diffusion coefficient. This section presents
methodologies used in the numerical experiments.

2.1. A conceptual model of a water f low path in a fracture network

Water flow and solute transport processes in fractured rock are complicated by the involved
heterogeneity at different scales and the complex geometry of fracture networks. Although
different conceptual models for flow and transport in fractured rock exist, many studies indicate
that a flow pattern is mainly characterized by many flow channels (or separate individual flow
paths) (e.g., Tsang and Neretnieks, 1998). Different channels or paths have different flow and
transport properties, resulting in large-scale heterogeneities. Water flow in a single flow path (or
channel) has been often simplified as a flow process within a single straight fracture (e.g.,
Neretnieks, 2002; Becker and Shapiro, 2000). In reality, however, f low structure is more
complicated than that, owing to the complexity of fracture network geometry. Percolation models
(that study network connectivity and characteristics of cluster structures) provide more realistic
representation of flow path geometry (e.g., Staffer and Aharony, 1994; Renshaw, 1999). For
example, shown in Fig. 1 is a two-dimensional statistically isotropic bond percolation network at
the percolation threshold (Renshaw, 1999). A bond can be considered as a single fracture within a
fracture network. At percolation threshold, a network forms a single connected path from the inlet
(top) to the outlet (bottom), as shown by heavy links in Fig. 1. Obviously, the backbone
(consisting of heavy links) corresponds to an individual major flow path in a fracture network.

The backbone has several useful features. First, not all the bonds on the backbones are singly
connected. It is clear from Fig. 1 (or other figures for bond percolation) that the singly connected
Fig. 1. A two-dimensional bond percolation network at the percolation threshold (after Renshaw (1999)). The heavy links
correspond to the backbone.
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segments are often separated by structures that contain several routes in parallel that are called
loops by Staffer and Aharony (1994). As previously indicated, bonds in Fig. 1 can be considered
as individual fractures (Renshaw, 1999). Therefore, these loops are also major features for flow
pathways, as demonstrated, for example, by de Dreuzy et al. (2001) and Liu et al. (2002).

Second, it is well known that percolation structures at percolation threshold exhibit fractal scaling
properties (Staffer and Aharony, 1994). This means that the cluster structure is similar (usually
statistically similar) at different scales and the size of the loop will growwith the size of the network.
However, when a percolation network is above percolation threshold, there exist multiple globally
connected clusters (or flow paths) in a network. (The existence of multiple flow paths is more
realistic for a natural fracture network.) In this case, the scaling properties are valid only for a scale
smaller than the so-called correlation length defined as some average distance of the two bonds
belonging to the same cluster (Staffer and Aharony, 1994). Roughly speaking, the correlation length
is proportional to the size of a typical flow loop. The scaling will not exist anymore for a network
with a size larger than the correlation length. In other words, the size of the loops cannot grow any
further with scale when it approximately reaches the half spacing of the two separated flow paths.

Third, the above two features were originally observed for networks consisting of randomly
distributed bonds with the same lengths. Networks of this kind are investigated in the classic
percolation theories (Staffer andAharony, 1994). However, real world fracture networks are generally
more complicated, because of heterogeneity. Their distribution is not purely random and may exhibit
spatial correlations and individual fractures are not identical. It is well documented that the trace length
distribution of fractures follows a power law, and longer fractures generally have larger apertures (e.g.,
Renshaw, 1999; deDreuzy et al., 2001;Liu et al., 2002). In this case, the two featuresmentioned above
are still valid with additional complications (Renshaw, 1999; de Dreuzy et al., 2001; Liu et al., 2002;
Darcel et al., 2003). As demonstrated in deDreuzy et al. (2001) and Liu et al. (2002), singly connected
parts of a flow path consist mainly of longer fractures with relatively large apertures, while the loops
mainly result from intersections among large fractures and relatively short fractures. Note that aperture
variability exists among these loops because fractures with different trace lengths are involved and
fracture apertures, as mentioned above, are generally correlated to the fracture trace lengths.

It is also important to indicate that the above discussion is for bonds or fractures that form
backbones for a network. There are some dead-end fractures or bonds connected to the backbone, as
shown in Fig. 1. If there is a considerable advection process between fractures and the surrounding
matrix, these dead-end fractures may be important for enhancing fracture–matrix interaction for
solute transport (Wu et al., 2004). In this study, we ignore the effects of these dead-end fractures
because the advection process between fractures and the surrounding matrix is extremely small, as a
result of the negligible permeability value in the rock matrix under saturated flow conditions, i.e. the
water within the dead-end fractures is essentially stationary. The more important features of a flow
path corresponding to the backbone geometry of a fracture network (that are discussed above) are
used in constructing our numerical experiments.

2.2. Numerical experiments

2.2.1. Construction of f low paths
Numerical experiments are designed to investigate solute transport processes through a flow

path in a fracture network, with a focus on the effective matrix diffusion coefficient as a function
of distance from the source. The flow paths are constructed to be consistent with the features
discussed in Section 2.1. Fig. 2 shows a flow path constructed using a deterministic recursive
procedure. The Level 1 fracture in Fig. 2 represents connected long fractures that form the singly



Fig. 2. A f low path characterized by scaling behavior.
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connected segments in a network and the major conduit at locations where multiple loops exist.
Two Level 2 fractures (with a shorter trace length and smaller fracture aperture than Level 1) are
then added, and an equilateral triangle is formed where the loop occurs. The same procedure is
continued to add Levels 3 and 4 fractures representing relatively small-scale fractures.

This recursive procedure enables a relatively small part of the flow path to be similar to the
whole flow path in shape, an important feature of a fractal. As previously indicated, a flow path in
a network at percolation threshold or within a scale less than the correlation length is fractal, but
fractal scaling behavior no longer holds for a scale larger than the correlation length. To consider
this nonfractal behavior at a relatively large scale, Fig. 3 presents a flow path constructed by
removing the Level 2 fracture and those higher-level fractures connected to that fracture from
Fig. 3. A flow path generated by removing Level 2 fracture and the associated higher-level fractures from the path in Fig. 2.



Fig. 4. Basic elements of a f low path that are used to calculate and distribute f low rates.
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Fig. 2. By removing these fractures, the geometry of the flow path in Fig. 3 exhibits a scaling
behavior at relatively small scales and a periodic (nonfractal) behavior at relatively large scales.

We set the length and the aperture of the Level 1 fracture in Figs. 2 and 3 to be 9 m and
0.001 m, respectively. Both of these values are consistent with the fracture data in the unsaturated
zone of Yucca Mountain (BSC, 2004). Based on the consideration that longer fractures have
larger fracture apertures, and that the hydraulic conductivity of a fracture is proportional to the
square of the fracture aperture (e.g., de Marsily, 1986), hydraulic conductivity (K) and aperture (b)
for different levels of fractures are assumed to have the following relation:

Ki

Kiþ1
¼ bi

biþ1

� �2
¼ a ð1Þ

where i=1, 2 and 3 is the level of a fracture and αN1 is a constant.

2.2.2. Calculation of water f low and solute transport
To calculate solute transport within a flow path, we need to calculate a steady-state flow rate

(and velocity) for each segment in the path. Closed-form relations among a flow rate, the total
water flow rate, and network properties can be obtained using relations derived from two basic
elements (shown in Fig. 3) for a flow path. Defining the conductance to be the conductivity
divided by the corresponding length of a given segment, we can express the total conductance
(Tab) from A to B and relations among flow rates in Fig. 4(a) as

TAB ¼ T1 þ T2 ð2Þ

Q1 ¼ Q
T1
TAB

ð3Þ

Q2 ¼ Q
T2
TAB

ð4Þ

and for Fig. 4 (b) as

TAB ¼ 1
1
T1
þ 1

T2

ð5Þ

Q1 ¼ Q2 ¼ Q ð6Þ
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With these basic relations for flow in parallel and in serials, the flow rate in each segment can be
derived. Note that water flow velocity is determined as the flow rate divided by the corresponding
aperture. In this study, we set the total flow rate to be 0.001 m2/day, corresponding to a water flow
velocity on the order of 1 m/day for the Level 1 fracture (when flow rates at fractures of the other
levels are ignored).

Once the flow field is determined, we calculate solute transport within a flow path to determine
breakthrough curves at locations B, C, D, and E (Figs. 2 and 3). The calculations are based on
recent theories to determine solute transport along a single flow pathway with a wide range of
retention processes (including matrix diffusion) and spatially variable flow and transport
properties (Cvetkovic et al., 2003; Painter and Cvetkovic, 2005). According to these theories, the
impulse-response function in the time domain for such a single pathway system, which also may
be viewed as the probability density distribution for a unit pulse input of conservative solute, is
given as (Painter and Cvetkovic, 2005):

gl ¼
Hðt−sÞB

2
ffiffiffi
p

p ðt−sÞ3=2
exp

−B2

4ðt−sÞ
� �

ð7Þ

where H is the Heaviside function, and t is time. The residence time τ is defined by

s ¼
Z 1

0

dl
V

ð8Þ

where l is the distance between the inlet and the location where a breakthrough curve is observed,
and V is the water flow velocity along a flow pathway. The parameter B is defined as

B ¼
Z 1

0

/
ffiffiffiffi
D

p

b
dl
V

ð9Þ

where ϕ, D and b are the matrix porosity, local matrix diffusion coefficient (molecular diffusion
coefficient multiplied by tortuosity factor), and local half aperture, respectively. The cumulative
distribution of the impulse-response density (Eq. (7)), which will be used later, can be
mathematically expressed as

CTðtÞ ¼ 0 for tVs ð10� 1Þ

CTðtÞ ¼ erfc
1
2

B

ðt−sÞ1=2
" #

for tNs ð10� 2Þ

There are many different pathways between the inlet and the monitoring point for a given flow
path (Figs. 1 and 2). Each pathway corresponds to a set of values for parameters τ and B. To
determine these parameter values using Eqs. (8) and (9), we use a particle-tracking scheme. We
release M particles from the inlet of a flow path, and track each particle from the inlet to the
selected monitoring point. A particle moves with a local velocity at the given segment of the
network; at an intersection the probability of a particle to move to a segment is determined as the
ratio of flow rate for the segment to the total flow rate towards the intersection. In this study, we
use M=5000. (Our numerical experiments showed that a larger M value gives essentially the
same results as M=5000.) For solute transport with a constant concentration C0 at the inlet, the
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breakthrough curve at a monitoring point is given as an average over the particles of the
superposition integral of the impulse–response function (Eqs. (10–1) and (10–2)), or

CðtÞ
C0

¼ 1
M

XM
i¼1

Ci
⁎ðtÞ ð11Þ

In this study, we set the matrix porosity ϕ at 0.1 and the local matrix diffusion coefficient D at
10−11 m2/s, consistent with the corresponding data collected from the unsaturated zone of Yucca
Mountain, Nevada (BSC, 2004; Wu et al., 2004). Also note that Eqs. (7), (8), (9), (10–1), (10–2)
are valid only for cases in which fracture spacing is infinite, so that matrix diffusion is not limited
by nearby fractures. Considering that the penetration depth of solute into the matrix is on the order
of

ffiffiffiffiffiffiffiffiffiffi
Dttest

p
(where ttest refers to the time when the last observation is made in a numerical

experiment), and that this depth is generally much smaller than the smallest matrix block size in
Figs. 1 and 2 (roughly characterized by the length of a segment for a level 3 fracture), these
relations are here considered to be good approximations.

2.2.3. Determination of effective parameters
The effective parameters (including effective matrix diffusion coefficient) may be determined

by fitting the numerical experiment results (Eq. (11)) to the analytical solution of Tang et al.
(1981) for solute transport along a single fracture. A similar curve-fitting approach has often been
used in interpreting field-scale tracer testing results. Also note that the analytical solution of Tang
et al. (1981) was developed for the same boundary condition (constant concentration C0 at the
inlet) as that used to derive Eq. (11). The curve-fitting is conducted using iTOUGH2-TRAT
(Zhou, 2005) by minimizing an objective function defined as the summation of the square of the
differences (between a calculated concentration value and the corresponding concentration value
observed from a numerical experiment) for different observation times. The iTOUGH2-TRAT
program is based on iTOUGH2, a program using inverse modeling for parameter estimation
(Finsterle, 1999).

Values for the three parameters, residence time τ, Peclet number Pe= l /αL (where αL is
dispersivity) and parameter A ¼ /

ffiffiffiffiffi
Dm

p
b (where Dm is the effective matrix diffusion coefficient) are

determined from fitting an observed breakthrough curve at a given monitoring location. The
effective matrix diffusion coefficient is calculated from the fitted value of parameter A. To make
sure that the global minima of the objective function to be obtained, corresponding to the best
estimates of the related parameters, we used the computationally intensive grid research method
during the curve-fitting process (Finsterle, 1999). The grid search refers to the systematic
evaluation of the objective function in parameter space with parameter sets generated on a regular
grid.

3. Results and discussion

Zhou et al. (2005) compiled the fitted effective matrix diffusion coefficients for different test
sites reported in the literature and reanalyzed some tracer test results when the reported diffusion
coefficient values are not available from the literature. Liu et al. (2004b) also conducted a less
comprehensive literature survey. Based on these literature survey results, Liu et al. (2004b) and
Zhou et al. (2005) indicated that the effective matrix diffusion coefficient for fractured rock, just
like dispersivity and permeability, might be scale dependent and increase with test scale. Based on
the fact that the effective matrix diffusion coefficient is proportional to the square root of the fitted
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parameter A (Section 2.2.3), we define the following dimensionless parameter to characterize the
possible scale-dependent behavior from numerical experiments:

D⁎ ¼ A
Aref

� �2
ð12Þ

where Aref corresponds to the A value calculated using the local matrix diffusion coefficient and
the aperture value for the Level 1 fracture. Obviously, D⁎ will change with travel distance from
the source if the effective (fitted) matrix diffusion coefficient is scale dependent.

Under the methodology described previously, numerical experiments were performed for
solute transport in the flow path shown in Fig. 2 for several α values including 5, 10, and 20. As
indicated in Eq. (1), a larger α gives a smaller advective mass transfer from a low-level fracture to
relatively high-level fractures. Fig. 5 shows matches of breakthrough curves numerically
determined at locations B, C, D, and E in Fig. 2 for α=10, using the analytical solution for solute
Fig. 5. Matches of numerical experiment results (dashed lines) with the analytical solution to solute transport through a
single fracture (solid lines) at locations B, C, D and E for the flow path shown in Fig. 2.
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transport in a single fracture. Similar matches are obtained for other α values. As previously
discussed, this kind of match has been used in determining effective parameters, including the
effective matrix diffusion coefficient. The distances from the source (location A) to locations B,
C, D, and E are 1, 2, 6, and 9 m, respectively (Fig. 2).

Shown in Fig. 6 is the fitted effective matrix diffusion coefficient as a function of distance for
the flow path in Fig. 2 and for α=5, 10, and 20, respectively. The effective matrix diffusion
coefficient is indeed scale dependent and generally increases with distance. (The moderate
decrease in the coefficient from D to E results from the fact that the largest flow loop in the flow
path exists between C and D. If the size of the flow loop is much smaller than the size of flow path
in the flow direction, the local decrease may disappear, as shown in Fig. 9.) For a given distance,
the effective matrix diffusion coefficient generally decreases with increasing α, because a larger α
reduces mass transfer from the Level 1 fracture to the other smaller fractures. For α=100 (not
shown in Fig. 6), the D⁎ value is reduced to one and no scale dependence is detected. In this case,
Level 2 and higher-level fractures essentially do not contribute to the flow and transport process.
As expected, the determined residence time decreases with increasing α. For example, the
residence times at Location E (Fig. 2) are 14, 12 and 10 days for α=5, 10, and 20, respectively.
Fig. 7 also shows fitted dispersivity values for numerical experiments using the flow path in Fig. 2.
The dispersivity increases with the travel distance, which is consistent with many studies
reported in the literature (e.g., Neuman, 1990; Gelhar, 1993).

A combination of three mechanisms may contribute to the scale dependence of the effective
matrix diffusion coefficient shown in Fig. 6. First, the scaling behavior of the flow path (i.e., the
size of the flow loops and fracture matrix interface area increasing with scale) in Fig. 2 will
generally give a larger degree of fracture matrix interaction at a larger scale. This results in a larger
effective matrix diffusion coefficient at a larger scale. Note that the effective matrix diffusion
coefficient may be related to the actual fracture–matrix interface area (Liu et al., 2004a). Second,
the process of advective mass transport from Level 1 fractures to the other fractures forming flow
loops in Fig. 2 is mathematically similar to matrix diffusion and may result in the scale
dependence of the fitted effective matrix diffusion coefficient. (The similarity of this advective
Fig. 6. Fitted relative effective matrix diffusion coefficient values (Eq. (12)) as a function of distance for the f low path
shown in Fig. 2. The curve labeled with “reduced D” corresponds to the local matrix diffusion coefficient reduced by 100
times (as compared with the other curves).



Fig. 7. Fitted dispersivity values as a function of distance for the f low path shown in Fig. 2.
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transport process to matrix diffusion was used by Shapiro (2001) in interpreting certain field-scale
testing data.) Third, matrix diffusion within these higher-level fractures may play an important
role in determining the effective matrix diffusion coefficient (even when the scaling in geometry
of a flow path does not exist). This diffusion process (which is not considered in the analytical
solutions for estimating the effective matrix diffusion coefficient) may result in the observed scale
dependence at a certain range of scales, because at a larger scale there are more solute particles
traveling through small-scale fractures. Note that the effective matrix diffusion is inferred from
parameter A (Section 2.2.3) and small fractures have large A values as a result of small apertures.
This third mechanism is demonstrated in Fig. 8.

To check if the second mechanism (advective transport alone) is the dominant mechanism for
the observed scale dependence, we conducted a numerical experiment using the flow path in Fig. 2
and for α=5. Specifically, we reduced the local matrix diffusion coefficient by 100 times. If the
advective process were indeed the dominant mechanism, the effective matrix diffusion coefficient
determined from the numerical experiments would not change significantly with the change in the
local matrix diffusion coefficient. The determined effective matrix diffusion coefficients are also
shown in Fig. 6. Obviously, values for these coefficients are significantly smaller than those with
the higher local matrix diffusion coefficient (Fig. 6). Therefore, matrix diffusion within fractures
including small-scale fractures, rather than the advective transport between fractures at different
Fig. 8. Effective matrix diffusion as a combination of local-scale advection and matrix diffusion in fractures at different
scales.



Fig. 9. Fitted relative effective matrix diffusion coefficient values (Eq. (12)) as a function of distance for the f low path
shown in Fig. 3.
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levels alone, is the ultimate process for determining the effective matrix diffusion coefficient and
its scale dependence. However, advective transport to (high-level) small fractures is needed to
move solute to these fractures from a Level 1 fracture for the matrix diffusion processes. Without
this advection, matrix diffusion in these small fractures would not be able to occur.

As previously indicated in Section 2.1, the scaling of the network geometry for a flow path
does not always exist especially when the size of a network is larger than the correlation length.
To investigate the solute transport process in a network without scaling properties in geometry, we
performed a numerical experiment using the flow path in Fig. 3 for α=5. The flow path does not
have scaling properties in geometry at large scales. (As shown in Fig. 3, the scale under which the
scaling in flow-path geometry holds is 3 m for this particular flow path.) Numerical experiment
results observed at locations B, C, D and E (Fig. 3) are matched to determine values for the
effective parameters (Section 2.2.3). As shown in Fig. 9, the effective matrix diffusion coefficient
is still scale dependent for the given distance range from A to E. This seems to demonstrate that
the existence of local flow loops and the associated matrix diffusion process can result in scale
dependence for travel distances beyond the scale under which the scaling properties in geometry
exist.

However, this study cannot exclude that a constant D⁎ can be reached for travel distances
much larger than that from A to E (Fig. 3), owing to the lack of scaling properties in the flow path
geometry at relatively large scales. The existence of the constant D⁎ at relatively large scales may
be similar to the asymptotic behavior of macroscopic dispersivity for a flow field characterized by
a stationary random permeability distribution (Frind et al., 1987; Gelhar, 1993). While the focus
of this study is on possible mechanisms behind the observed scale dependence of the effective
matrix diffusion coefficient, we will leave the potential asymptotic behavior of D⁎ at much larger
scales to future research.

The above discussions indicate that a combination of local flow loops, matrix diffusion
associated with these loops, and scaling properties in flow-path geometry, seems to be a major
mechanism causing the scale dependence of the effective matrix diffusion coefficient observed at
a range of scales. The scaling properties in flow-path geometry causes the increase in D⁎ at scales
within which scaling holds. The matrix diffusion processes associated with flow loops result in



Table 1
Fitted parameter values for the first flow path (Fig. 2)

α Location D⁎ τ (day) αL (m)

5 B 0.89 1.03 0.02
C 1.73 2.00 0.05
D 5.34 10.89 2.22
E 5.10 14.00 3.00

10 B 0.76 1.03 0.02
C 0.95 2.07 0.05
D 4.91 9.00 3.00
E 3.96 11.89 3.00

20 B 0.76 1.03 0.02
C 0.82 2.08 0.05
D 4.62 6.93 2.70
E 3.34 10.00 2.57
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further increases in D⁎ at relatively large scales. The advective process within flow loops is
responsible for feeding solute into matrix diffusion processes within the related subfractures.

Tables 1, 2 and 3 give values for the fitted (effective) transport parameters for different
numerical experiments. Because both dispersion and matrix diffusion processes can cause the
spreading in the observed breakthrough curves, one may be concerned with the possibility that the
scale dependence of the effective matrix diffusion coefficient is an artificial effect of the scale
dependence of the dispersivity. This is not the case here. For example, Sánchez-Vila and Carrera
(2004) theoretically demonstrated that the artificial matrix diffusion coefficient (when dispersion
is completely ignored in the model) resulting from the actual dispersion process is inversely
proportional to the dispersivity. Because the dispersivity increases with travel distance, one would
not observe an increase in matrix diffusion coefficient with scale if the dispersion were artificially
considered a major component of matrix diffusion process. The above argument is also supported
by our simulation results showing a strong dependence of the effective matrix diffusion
coefficient on the local diffusion coefficient.

The importance of flow-path geometry for the effective matrix diffusion coefficient values
determined from the field tests based on simplified flow geometry is supported by the recent study
by Neretnieks and Moreno (2003). They reported that matrix diffusion coefficient values much
larger than the lab data were needed to match the results of tracer tests conducted at Äspö Hard
Rock Laboratory in previous studies. Based on high-resolution transmissivity measurements in
five boreholes at the test site, they concluded that there were many more conductive fractures than
those assumed in previous studies. By including these new small-scale fractures with relatively
small permeability values, they were able to reasonably reproduce the tracer test results with
matrix diffusion coefficient values measured from the rock matrix samples. This is consistent with
the concept that effective (large-scale) dispersivity for a natural porous medium can always be
Table 2
Fitted parameter values for the first f low path with the reduced local-scale diffusion coefficient value (Fig. 2)

α Location D⁎ τ (day) αL (m)

20 B 0.0004 1.01 0.0008
C 0.01 2.03 0.0016
D 0.17 9.26 0.28
E 0.18 12.00 0.21



Table 3
Fitted parameter values for the second f low path (Fig. 3)

α Location D⁎ τ (day) αL (m)

5 B 0.90 1.03 0.02
C 3.44 1.98 0.12
D 4.24 4.68 0.24
E 5.34 6.81 0.41
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expressed in terms of a local value in a numerical model, provided that heterogeneity can be
adequately resolved. However, it is practically difficult, if not impossible, to characterize fractures
at different scales (or heterogeneity at different scales for porous media) for large-scale problems.
Nevertheless, Neretnieks and Moreno (2003) demonstrated that small-scale fractures are indeed
an important factor contributing to the differences between lab-scale and field-scale effective
matrix diffusion coefficient values, which is consistent with our study results here.

Fig. 10 shows a comparison between our simulated results for the two flow paths and a portion
of data points reported by Zhou et al. (2005) who surveyed effective matrix diffusion coefficient
values from different test sites with test scales up to more than 1000 m. The parameter Fd refers to
the ratio of the effective matrix diffusion coefficient value to its local-scale value, and is
equivalent to D⁎ (Eq. (12)) for this specific study. The data points correspond to those from non-
Granite fractured rock (with test scales less than 100 m) because our simulations are roughly
based on parameter values from the unsaturated zone of Yucca Mountain that is not Granite. For a
given travel distance (test scale) in the figure, the simulation result refers to the average D⁎ values
for the two flow paths shown in Figs. 6 and 9. (The case with the reduced local diffusion
coefficient is not included.) Fig. 10 also shows two data points corresponding to the geometric
means of data at both the rock matrix sample scale and a tens of meters scale. A test scale of 5 cm
is assumed for a rock matrix sample. Note that by definition, Fd is always equal to one at the rock
matrix sample scale, and that data point actually represents many overlapped data points because
each field-scale data point corresponds to one data point at the rock sample scale. (The data set
reported in Zhou et al. (2005) indicates that the geometric means for Fd values are about 10 and
100, respectively, for test scales of tens of meters and hundreds of meters.) We need to keep in
Fig. 10. A comparison between the simulation results with a portion of data from Zhou et al. (2005).
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mind that the comparison here is largely qualitative. This is because details of small-scale
fractures for the test sites are not available and the assumed high level (small-scale) fractures in
our simulations are not necessarily representative for a particular test site. Nevertheless, our
simulation results are within the range of the test data. While there is a large degree of fluctuation
in Fd data points, the geometric mean of these values for test scales between several meters to
100 m is about 10, as mentioned above. Our simulation result (Fd value) at a scale of about 10 m
is 4.3, which is not too far from the geometric mean. Also note that our simulation results are
generally on the lower side of the test data (Fig. 10). This may imply that in addition to the effects
of flow geometry, other mechanisms also contribute to the scale dependence. As a matter of fact,
most recently Liu et al. (2006) theoretically investigated effects of rock matrix heterogeneity on
the scale dependence of the effective matrix diffusion coefficient, and found that the
heterogeneity indeed potentially contributes to the scale dependence. It is very likely that the
scale dependence of the effective matrix diffusion coefficient is a result of a combination of
different mechanisms and the flow geometry is one of them. More studies are needed to fully
understand this important scale-dependent behavior.

4. Concluding remarks

It has been recognized that matrix diffusion is an important process for retarding solute
transport in fractured rock, and the matrix diffusion coefficient is a key parameter for describing
this process. Previous studies indicated that the effective matrix diffusion coefficient values,
obtained from a number of field tracer tests, are enhanced in comparison with the local values and
may increase with test scale. In this study, we have performed numerical experiments to
investigate the potential mechanisms behind this scale dependence. The current results indicate
that a combination of the local flow loops and the associated matrix diffusion process, together
with scaling properties in flow path geometry, seems to be the major mechanism (at a range of
scales) for the observed scale dependence of the effective matrix diffusion coefficient. Other
potentially important mechanisms may still exist and need to be investigated in future studies.
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